If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+16m-8=0
a = 1; b = 16; c = -8;
Δ = b2-4ac
Δ = 162-4·1·(-8)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-12\sqrt{2}}{2*1}=\frac{-16-12\sqrt{2}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+12\sqrt{2}}{2*1}=\frac{-16+12\sqrt{2}}{2} $
| |9y+9|-6=0 | | 56−21=x−20 | | |2z+5|−25=0 | | –5u–8=–2u–1+4u | | 57-x+9=61 | | 5-x+9=61 | | z0.06=-7.98 | | s=315=21s | | -x+229=169 | | -26r=-66 | | 158=46-y | | -v+44=164 | | 11.2x=-60.48 | | 13w=64+5w | | -5.2=m30.1 | | 792=-33w | | -80=p15 | | –2m+4m+5=-3 | | 0.16x=0.7 | | 16=w/3+4 | | -6+5w=-11 | | -32=c-22 | | b8=-24 | | 12/n=1 | | 34=u/4+13 | | X^2+4x-133=0 | | 22=x/5+12 | | n-1.6=6.4 | | m/3.4=1.5 | | -1/2-8e=18 | | 62=a+16 | | F(x)=x2+2X-3 |